
Extracting Parallelism is key to performance.

Key goal of hardware, systems, and for more than 
a decade. The only way to get performance.



Old Slides from ~2017. 
But these are main ideas, we’ll see them at 

multiple scales.

Biased by my own work because I have slides and 
am lazy… not because I think it’s best.
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Statistical algorithms have 
relaxed notions of correctness 
leads to new opportunities for:
• Algorithms,
• Systems, and
• Hardware.

Message



The Key Balance
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Key Issue: Balance
Statistical versus Hardware Efficiency. 

Ce Zhang, CR DimmWitted: A Study of Main-Memory Statistical Analytics. VLDB14.

• Statistical efficiency how many steps you take

• Hardware efficiency how efficiently you take each of those steps



Three driving trends in hardware

(1) Lots of smaller cores,
(2) Non-Uniform Memory (NUMA), and 
(3) Single-Instruction Multiple Data 
(SIMD) (and SIMT)

Approximation allows major performance 
improvements. 



Trend 1: Many different Cores
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Single Cores are not getting faster.

Chips now contain many cores, so throughput 
is increasing… but need to rewrite algos!

Speed



Statistical Analytics Crash Course
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min x f (x, yi )
i=1

N

∑
Staggering amount of 
machine learning/stats 

can be written as:
N (number of yis, data) typically in the billions

Ex: Classification, Recommendation, Deep Learning.

xk+1 = xk −αN∇f (xk, yj )

De facto iteration to solve 
large-scale problems: SGD.

Select one term, 
j, and estimate 

gradient. 
Billions of tiny iterations.



Multicore: Independent Case
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Jobs with little communication, 2 
cores executes twice as faster!

Job 1

Job 2

Job 3

Job 4



Multicore: Dependent Case
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Protocol for “whose turn,” called 
locking, takes 100 cycles.

Job 1

Job 2

Job 3

Job 4

Is it my 
turn?



Communication scales quadratically

Suppose it takes 1 second to communicate 
with 2 cores.

4 cores takes 4 second

Server may have 
100+ cores

8 cores takes 
16 seconds.

k cores takes 
(k/2)2 seconds.



The key algorithm in machine learning

SGD consists of 
BILLIONS of tiny jobs! 

The core algorithm of modern learning 
called is Stochastic Gradient Descent (SGD) 

Implemented in a classical way (locking) 
SGD actually gets slower with more cores

So what can we do?



Multicore: Hogwild! Case
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Ignore the locks!

Job 1

Job 2

Job 3

Job 4

Is it my 
turn? Yes!



How do we run SGD in Parallel?

Theorem (roughly, NIPS11): If we do no 
locking, SGD converges to correct
answer—at essentially the same rate! 

Just ignore the locking protocol… 
As we say, go Hogwild!

This is computer science heresy!

Hogwild! [Niu, Recht, Ré, Wright NIPS11]
AsySCD [Liu, Wright et al.  ICML14, JMLR14]
Buckwild! [De Sa, Olukotun, Ré NIPS15]



Cortana: Microsoft’s Digital Assistant

http://www.wired.com/2014/07/microsoft-adam/

“…using a technology 
called, of all things, 

Hogwild!”

http://www.geekwire.com/2014/artificial-intelligence-breakthrough-microsofts-project-adam-identifies-dog-breeds/

All web companies have 
similar: image rec, voice, 
mobile, search, etc.



A larger trend?
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Relaxing consistency to be 
architecturally aware can be a 

big performance win.
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Asynchrony in Deep Learning

A regularizer is a (sane) statistical penalty…
Bugs in your implementation are not helpful



Trend 2: NUMA 
Non-Uniform Memory Access
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A view inside a box… (more later
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Modern version: Thousands of cores with close by memory 

(Called high-bandwidth memory, called HBM)



One Example: Quadratic Programming with Orthant 
Constraints (on cpu, same tradeoffs)
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One Example.
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What about multiple sockets?
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Model Replication
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Core 1

Core 2

Node 1

Core 3

Core 4

Node 2

ModelJust 
Data

Cache coherence Stalls!

RAMRAM

PerMachine (Hogwild!)

PerCore

Core 1

Core 2

Node 1

Core 3

Core 4

Node 2 RAMRAM
Model

Model

Model

Model

Infrequent Communication



Model Replication
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PerNode

Core 1

Core 2

Node 1

Core 3

Core 4

Node 2 RAMRAM

Model Model

Infrequent communication

Hogwild!

PerCore

In between
both Hogwild!
and PerCore?
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Statistical versus Hardware Efficiency

25DimmWitted: A Study of Main-Memory Statistical Analytics. VLDB14.

Relaxing consistency 
results in new tradeoffs.

Can be 100x faster than classical choices

1.Access methods
• {Row, Column, Row-col}

2.Model Replication
• {Core, Node, Machine}

3.Data Replication 
• {Full, Importance, Shard}



Trend 3: Single Instruction 
Multiple Data (SIMD)

Modern processors offer fine-grained parallelism. [NIPS15]
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SIMD Processing: Fine-grained parallelism

Single instruction multiple data (SIMD)

R1

R2

R1 + R2 =

R1

R2

R1 + R2 =

SIMD Addition (4 way)Standard Addition (Two registers)

Same operation on 
multiple data points in parallel



SIMD: Doubling again!

SIMD bandwidth has 
doubled each of the 
last four generations.

Image courtesy of Intel Corporation

Good old days of Moore’s Law! …
If we can take advantage of fine-grained parallelism



Precision vs. Parallelism

SIMD Precision SIMD Parallelism
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A hardware model for precision
[ISCA17]
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Four Classes of Numbers

¤Dataset numbers
¤ used to store the immutable input data

¤Model numbers
¤ used to represent the vector we are updating

¤Gradient numbers
¤ used as intermediates in gradient computations

¤Communication numbers
¤ used to communicate among parallel workers



Quantize classes independently

¤ Using low-precision for different number classes has different 
effects on performance.
¤ e.g. quantizing the gradient numbers improves compute throughput, 

but has little effect on memory

¤ Existing work often quantizes some classes, but doesn’t 
consider the others.



The DMGC Model

¤ Idea: associate each implementation with a DMGC 
signature that displays its precision for all four number classes
¤ Lets us classify previous work and future systems

D8M16G32fC16

The algorithm 
uses 8-bit 

numbers to store 
the dataset.

It uses 16-bit 
numbers for 
the model.

It computes 
gradients as 
32-bit floats.

It communicates 
among workers 

with 16-bit 
numbers.



Be warned:
Your learning parameters depend on the 

hardware and those numbers. 
(e.g. momentum and delay are connected)

Ioannis Mitliagkas Jian Zhang



What shook my belief in progress through optimization… 

• Turns out Optimization is a leaky abstraction for deep learning.
• There are approaches that cause the loss to go down more slowly (worse optimization) but generalizing 

better (better test performance). 

• Happy to give examples if you ask, so many out there it’s bizarre….

• This is so much more interesting than it should be!


